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ABSTRACT

No assertion can command attention in time of emergency like, "It's

a matter of life and death". The problem of making decisions that can

affect the likelihood of death is one of the most perplexing facing the

analyst. As individuals, we are often called upon to make decisions that

affect our safety, and others are increasingly making those decisions on

our behalf. Yet most present approaches to life and death-decision making

concentrate on the value of an individual's life to others rather than to

himself. These approaches are both technically and ethically questionable.

In this report, we develop a model for an individual who wishes to

make life and death decisions on his own behalf or who wishes to delegate

them to his agents. We show that an individual can use this model if he is

willing to trade between the quality and the quantity of his life. A

simplified version requires him to establish preference between the resources

he disposes during his lifetime and the length of it, to establish probabi-

lity assessments on these quantities, to characterize his ability to turn

present cash into future income, and to specify his risk attitude. We can

use this model to determine both what an individual would have to be paid to

assume a given risk and what he would pay to avoid a given risk. The risks

may range from those that are virtually infinitesimal to those that are

imminently life threatening. We show that this model resolves a paradox

posed by previously proposed models. In this model there is no inconsistency

between an individual's refusing any amount of money, however large, to incur

a large enough risk, and yet being willing to pay only a finite amount, his
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current wealth, to avoid certain death.

We find that in the normal range of safety decisions, say 10 or

less probability of death, the individual has a small-risk value of life

that he may use in the expected value sense for making safety decisions.

This small-risk life value applies both to risk increasing and risk

decreasing decisions, and is of the order of a few million dollars in the

cases we have measured. This small-risk value of life is typically many

times the economic value of life that has been computed by other methods.

To the extent such economic values are used in decisions affecting the

individual, they result in life risks that are in excess of what he would

willingly accept. Using the small-risk life value as a basis for compensa-

tion should allow most risk-imposing projects to proceed without violating

anyone's right to be free from significant involuntarily imposed hazards.

The report demonstrates the use of the model to treat hazards that

continue over many years, to determine the size of contributions to saving

the lives of others, and to incorporate more precise specifications of

consumption-lifetime preferences.
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1. Introduction

No sentence can inspire cooperation in time of emergency more

than "it is a matter of life and death". Decision problems whose

cutcomes could possibly involve death have always been the most

perplexing that we face. Yet, formal analysis has provided us with

very few tools that can help clarify our choices.

To the decision analyst, death poses one of the most perplex-

ing so-called "intangibles". Diverse outcomes that range from

sickness through recreation have been included in a logical analysis,

but the evaluation of fatal consequences has seldom proved

satisfactory. It seems likely that if we can treat the outcome of

death, the acceptability of logical analysis will be significantly

increased.

Logical analysis is seen by some as cold and impersonal rather

than as warm and human. These people reject immediately a logical

analysis of any decision that could have a consequence of death.

Of course, some questions are morally tainted, such as, "Would you

kill one to save many?", but here the moral problem lies in the

decision, not in the method used to make it. We are considering

at present not the question of the spiritual nature of human life,

but rather the question of how anyone can make decisions that affect

-I -



hazards to himself and others in a way that respects everyone's right to

freedom from coercion. To act without careful thought and judgment

seems less human than following an approach of the type we propose.

Indeed, we can find many decisions of a medical or safety nature

where using less than the best logic would be irresponsible if not

immoral.

The need for a rationale for making decisions involving

hazards is evident. Table 1.1 shows a brief list of hazardous

decisions--decisions to engage in activities that could be hazardous

to the point of death. Neither the list of activities nor the list

of the hazards they engender is exhaustive. Many of the activities

are clearly enjoyable and pursued in spite of their hazards. We see

that the apparently innocuous activity of staying home in bed has its

hazards, as well as possibly causing some of the other hazardous

activities listed earlier. We note, however, that for virtually all

the activities in the table, both the likelihood and consequences of

hazard are to some extent controllable by the individual.

Public activities have a corresponding set of hazards. Table 1.2

shows a representative list of public hazardous decisions in terms of

the area of the hazard, a typical responsible institution, and examples

of specific decisions in each area. We shall not discuss this table

in detail, but merely point out that many people are making decisions

regarding the safety of others. The question is not whether safety

decisions are going to be made, but rather who will make them and how.

Government analysts often use a number like $100,000 or $300,000

for the value of a life.

-2-



Table 1.1

PERSONAL HAZARDOUS DECISIONS

ACTIVITY SAMPLE HAZARDS

WALKING: DOG ATTACKS, MOTOR VEHICLES, FALLING

JOGGING: DOG ATTACKS, HEART ATTACKS, MOTOR VEHICLES,
FALLING

HORSEBACK RIDING: FALLING, BEING KICKED, STRUCK BY BRANCHES

BICYCLING: FALLING, MOTOR VEHICLES

DRIVING: MOTOR VEHICLES, ROADSIDE OBSTACLES, FIRES

MOTORCYCLING: FALLS, MOTOR VEHICLES

FLYING: COLLISION, EQUIPMENT FAILURE

HANG GLIDING: EQUIPMENT FAILURE

SKYDIVING: EQUIPMENT FAILURE

SKINDIVING: DROWNING

SWIMMING: DROWNING

BOATING: DROWNING, FIRES, EXPOSURE

SKIING: FALLS, COLLISION

SNOWMOBILING: ACCIDENTS, FREEZING

CAMPING: EXPOSURE, INSECT AND ANIMAL BITES

TRAVELING: DISEASE, ACCIDENTS

SPORTS: INJURIES, PARALYSIS
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EATING: CHOKING, POISONING, SHORTENED LIFE

DRINKING: MOTOR VEHICLE ACCIDENTS, CIRRHOSIS OF
THE LIVER, SHORTENED LIFE

SMOKING: CANCER, EMPHYSEMA, SHORTENED LIFE

BATHING: FALLING, ELECTROCUTION

CONTRACEPTION: DEATH, ILLNESS

PREGNANCY: DEATH, ILLNESS

ABORTION: DEATH, ILLNESS

INNOCULATION: DEATH

TAKING MEDICINE: DEATH, ILLNESS

UNDERGOING OPERATIONS: DEATH, PARALYSIS

STAYING HOME IN BED: FIRES, BURGLARS, FALLING AIRPLANES,
METEORITES, EARTHQUAKES
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Table 1.2

PUBLIC HAZARDOUS DECISIONS

AREA INSTITUTION EXAMPLE

PRODUCT SAFETY: CONSUMER PRODUCT SAFETY POWER MOWERS, TOYS,

COMMISSION BICYCLES

WORKPLACE SAFETY: OCCUPATIONAL SAFETY AND STEPLADDERS

HEALTH ADMINISTRATION

AIRPLANE SAFETY: FEDERAL AVIATION AGENCY EVACUATION TRAIN-
ING AND EQUIPMENT

HIGHWAY SAFETY: DEPARTMENT OF TRANSPORTA- SEAT BELTS, AIR
TI ON CUSHIONS, BUZZERS,

HELMETS

BOATING SAFETY: COAST GUARD FLOTATION DEVICE
REQUIREMENTS,
LIQUEFIED NATURAL
GAS SHIPMENT

FOOD SAFETY: FOOD AND DRUG CYCLAMATES,
ADMINISTRATION SACCHARIN, SODIUM

NITRITE

WATER SAFETY: ENVIRONMENTAL PROTECTION WATER RECYCLING

AGENCY STANDARDS

AIR SAFETY: ENVIRONMENTAL PROTECTION SULFUR DIOXIDE
AGENCY STANDARDS

DAM SAFETY: DEPARTMENT OF INTERIOR, SITING, CONSTRUC-
CORPS OF ENGINEERS TION, INSPECTION

STANDARDS

POWER PLANT SAFETY: DEPARTMENT OF ENERGY LIGHT WATER,
BREEDER REACTORS

MEDICAL SAFETY: FOOD AND DRUG ADMINIS- NEW DRUGS, CORON-
TRATION, DEPARTMENT OF ARY CARE UNITS,
HEALTH, EDUCATION AND ItUNNECESSARY

WELFARE SURGERY"I

ELECTRICAL SAFETY: UNDERWRITERS' LABORATORIES, ALUMINUM WIRE

LOCAL GOVERNMENT

FIRE SAFETY: NATIONAL BUREAU OF UPHOLSTERED FURNI-
STANDARDS, DEPARTMENT OF TURE, CHILDREN'IS

COMMERCE SLEEPWEAR

METEOROLOGIC SAFETY: NATIONAL OCEANIC AND HURRICANE SEEDING
ATMOSPHERIC ADMINISTRATION

SPACE RADIATION SAFETY: NATIONAL ACADEMY OF SCIENCES FLUOROCARBONS
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Perhaps the most common basis for this number is the expected present

value of future earnings of the individual. This value may be based

on the amount of the individual's earnings flowing to others or to

both others and himself. A second basis is the amount of damages

juries have awarded in compensation for death. This, in turn, is

often at least partially based on calculations of the first type, but

it is also tempered by community judgment. A third basis is the amount

of life insurance individuals carry. A fourth basis is the computation

of the value of life implied by social decisions, or in some cases by

individual decisions that have been made in the past. An excellent

review of these approaches appears in reference [1].

The difficulty with such approaches is that they all focus on

the individual's value to others rather than to himself. If I am

making a decision involving risk to myself, I want to use my value

to me, not my value to others. Furthermore, if someone else is making

a delegated decision on my behalf, I want him to use my value to me,

not my value to others. What we need is a comprehensive way to think

about the problem of risks involving death on both a private and

public basis.
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2. Desiderata for a Decision Procedure

Whatever procedure we develop should be able to treat all kinds

of risks* involved in both social and private decisions; the voluntary

risks that a person imposes on himself as well as the involuntary

risks that the government or other members of society impose on him.

While the procedure will be most useful in evaluating low

probability-high consequence outcomes, like death, it should treat

on a consistent basis all outcomes, even high probability-low

consequence outcomes, like perhaps minor eye irritation. And for

completeness, it should be able to treat high probability-high

consequence decisions, such as the decision to undergo an

experimental operation or to play Russian roulette. While we have

emphasized death as an outcome, pain, injury, scarring, and days in

the hospital should and can be treated [2] [3]. Naturally, the

economic consequences of risk, such as economic benefits or property

losses, must also be considered.

Whatever procedure is used should be able to treat all sources

of risk. In many decisions, the main sources of risk will be accidents.

These accidents may be caused by nature, such as earthquakes or

hurricanes [4], or by man, such as falling airplanes or ship collisions.

The man-made disasters will often be the result of spontaneous failures

of systems and safety features, and our procedure must be able to

represent these adequately [5]. However, man-made disasters can also

result from the unintentional or intentional acts of man. The

*Risk: the possibility of suffering harm or loss

-7-
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unintentional acts would be those associated with the inattention,

incompetence, or incapacity of those responsible for a system's

proper operation. The intentional acts could be spiteful actions,

sabotage, or war, perhaps the least recognized and least quantified

of contemporary risks.

Some decisions may produce continuing risks either instead of

or in addition to accidental ones. For example, the decision to

build a fossil fuel power plant may pose little risk of accident, but

a continuing hazard to health through its particulate and sulfur

dioxide emissions. These continuing risks of morbidity and mortality

must also be evaluated by the procedure.

-8-



3. The Decision Analysis Paradigm

A general procedure of the type we require is provided by

decision analysis, a discipline described at length elsewhere [6].

A simple characterization of the decision analysis approach appears

in Figure 3.1. A system model is constructed that allows the multi-

dimensional set of outcomes to be determined for any setting of the

state variables in the problem, the variables that are uncertain

and not under the decision-maker's control. When the decisioai-maker

assigns probabilities (indicated by f I ) to these state variables, he

determines a joint probability distribution on the outcome variables for

each alternative. Constructing the system model may not be a simple

task - it might require the efforts of many people for several years.

But the model and its associated probability assignments capture the

information associated with the decision.

The problem then becomes one of determining preference. We divide

the assignment of preference into three parts: value assessment,

time preference, and risk preference. This division is convenient,

but not necessary, and occasionally unachievable. Value assessment

refers to trading off one type of outcome for another, such as deaths

for injuries, or sound level for money. Time preference requires

trading values in the future for values today. In the extreme, this

becomes a question of asking what one generation owes the next.

Finally, we must assess how expectation is to be traded for surety -

the assignment of risk preference. When the information is combined

with preference, logic alone determines the best alternative, the

-9-



!OUTCOMES

VALUE TIME RISK

MODEL ASSESS- PREFER- PREFER-
MENT ENCE ENCE

ALTERNATIVES

INFORMATION I PREFERENCE

I

Figure 3.1: The Decision Analysis Paradigm
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one that is consistent with the decision-maker's alternatives,

information, and preferences.

The main value of the paradigm is not, however, that it finds

the best decision, but rather that it provides considerable insight

into the problem and a means for communicating about the important

issues when several parties are involved. The insight comes from

several sources. First, there is the immersion value that any

systematic procedure provides for those who follow it. Second,

there is the ability to do quantitative sensitivity analysis to

determine the relative importance of various features of the problem.

Third, there is the unique ability of decision analysis to evaluate

what additional information on any uncertain variable would be worth.

The value in communication comes from the use of the language

and concepts of decision analysis to facilitate discussion among

decision-makers, analysts, and experts in the information areas

bearing on the decision. Decision analysis provides a language for

describing risky problems that allows us to avoid semantic traps and

pointless arguments that do not contribute to the development of

understanding.
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Application to Hazardous Decisions

The purpose of this work is to develop a methodology for

describing preferences in situations where the decision affects

the probability of death. We thus concentrate on the preference

side of the decision analysis paradigm. Of course, most hazardous

decisions will, in addition, require extensive analysis to prepare

the information side, to assess the probability of death for each

alternative.

-12-



4. A Delegable Decision Procedure

Our ethical starting point is that each individual has the

right to make or delegate decisions that affect his life. He assigns

his preferences on possible outcomes and assesses the probabilities

of these outcomes for each possible course of action using his

knowledge. He thus bases his decisions on the values and risks he

perceives, although others may attempt to persuade him to change his

assessments by providing information.

Ideally, every person would make his own life and death decisions.

However, there is a large practical advantage if he can delegate some

of these decisions to agents in such a way that his rights are respected.

We shall explore how the principal can define for the agent both the

domain of delegated decisions and how the agent should make a decision

within that domain.

To illustrate how we might construct a delegable decision

procedure for a decision involving the value of life, let us suppose

that I have delegated to an agent the right to make a decision that will

affect both net benefit to me and my probability of death. Figure 4.1

describes the situation. There are three alternative system designs:

A, B, and C. My annual expected net benefits from the systems,

exclusive of the possibility of death, are A9 B' IC9 respectively,

with 7A > 7B > C" The associated annual probabilities of my death

that the agent reports and I believe are PA' PB' PC with

PA > PB > PC- Note that the system with the most desirable economic

effect is the one with the highest probability of causing my death.

-13-
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Figure 4.1: A Delegable Decision
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Let us suppose that we have the agent act as follows. First,

I provide him with a life value v. Then he uses this value to

compute <(> , the expected net benefit to me from each of the

systems and selects the one for which this quantity is highest.

Figure 4.2 shows the effect of my supplying various life values, v.

As v increases, the net benefit decreases, but the safety of the

resulting system increases. The choice of system moves from A to

B to C. In fact, as the dashed lines indicate, in practice there

will be a virtual continuum of systems; each v will correspond to

a system design with particular economic benefits and safety.

The problem now is what value of v should I provide? If I

make it too large, I am very safe, but I receive very little benefit.

If I make it too small, I receive a great deal of benefit, but I

feel unsafe [51. Indeed, as we shall see, when p becomes too

large, I shall not want the decision made by this simple expected

value procedure at all. But we now turn to the question of

establishing v for those cases where its use would be appropriate.

-15-
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I.The Issue in the Extreme: The Black Pill

To face this question head-on, let us consider an example I

call the black pill. You are offered an opportunity to take

a pill which will kill you instantly and painlessly with probability p;

you have no doubt about the probability. To induce you to do this, you

are offered an amount of money x. For a given p, how large would x

have to be before you would be indifferent between taking the pill and

not taking it?

Figure 5.1 places the question in a concrete form. Would you

accept one chance in 10,000 of death for a payment of $1000? We

suppose that an urn has been filled with 10,000 pills, of which one

is the indistinguishable, deadly "black pill". A reputable accounting

firm assures you that there are, in fact, 10,000 pills in the urn and

that there is exactly one deadly pill. Would you swallow a pill from

the urn in consideration of a cash payment of $1000?

When I have posed this problem to groups, only a small percentage

say that they would accept the proposition. This means that, in the

expected value sense, most of the people in the groups are valuing their

lives at more than $10,000,000. There is an obvious discrepancy between

this number and the value of a few hundred thousand dollars used in

certain public decisions. And yet we must question whether people

implicitly assigning a value of tens or hundreds of millions of dollars

to their lives are being consistent with the levels of resources they

commiand and with the hazards they presently have accepted in work and

play, We need some way to think about the black pill proposition-in

more detail.

-17-



WOULD YOU TAKE ONE IN TEN THOUSAND

110,000 ) CHANCE OF DEATH FOR $1000

10,000 PILLS

OF WHICH ONE IS THE

I NDISTINGUISHABLE,

DEADLY "BLACK PILL".

Figure 5.1: The Black Pill
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The decision situation is diagrammed in Figure 5.2. Suppose

you now have wealth W. If you reject the offer, you will

continue your life with wealth W and face whatever future life

lottery you presently face. Your future life lottery is the uncertain,

dynamic set of prospects you foresee beginning with today. If, on the

other hand, you accept the proposition, your wealth will increase to

W + x. If you live after taking the pill, you will begin your future

life lottery with wealth W + x, presumably a more desirable situation.

If you die, you will leave W + x in your estate, and, of course, have

no opportunity to enjoy it. Clearly the value of this estate benefit

might be different for different people, and could be included in the

analysis. But let us say, for the moment, that it has no value to

you. Naturally, there would also be tax effects, but these too we

shall ignore.

When I think about this proposition, about what x I would

stipulate for different values of p, I arrive at a curve that is

qualitatively like that of Figure 5.3. As p increases, I want x

to increase. As the values of p become 1/1000 and then 1/100,

I demand increasingly large sums of money. In fact, there may be a

probability p = pmax such that no sum of money, however large, will
1

induce me to play. For example, if pmax < , then you could never

pay me enough to play Russian roulette. The question that remains is

how to determine this curve quantitatively from more fundamental

preferences.

Before we proceed to this determination, let us discuss other

aspects of the black pill situation. First, if you feel that it would

-19-
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Figure 5.2: The Black Pill Decision Tree
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Figure 5.3: The Qualitative Tradeoff
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be morally wrong to take such a pill, imagine that the need arises

in an experiment that could save many lives or produce other value

to mankind. (Consider the plight of the first man who ate a tomato.)

We could certainly create just enough moral advantage to taking it to

offset your moral objections until the question became the economic

one of whether it should be you or someone else who gets the privilege.

Every person who travels on business is taking the black pill as part

of his work.

There is also the possibility that a person accepting the black

pill proposition could use the $1000 he receives to diminish his death

risk from other sources by more than 1/10,000. For example, a $1000

medical examination might reduce his death probability by 1/1000.

It may be most helpful to view hazardous decisions as a series of

transactions where we are sometimes buying and sometimes selling hazard

in our lives for pleasure, money, or other valuable consideration. The

question is how to be consistent in such transactions.

To complete our discussion, we must therefore also consider a

situation where you face a decrease p in your probability of death and

determine how much, x , you would be willing to pay for the decrease.

The curve of Figure 5.3 could be extended to include decreases in the

probability of death, limited, of course, by the requirement that the

absolute probability of death in any time period could not be negative.

The amount x that you would pay to reduce the probability of death

next year to zero (given that you lived your life as usual) would be

the value of a real one-year life "assurance" policy. We consider

paying for such decreases in hazard in Section 11.

-22-
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6. Finding the Value of Life

Our procedure for finding the value of life will be based on

the belief that everyone has a fundamental preference on both level

of consumption and remaining length of life. By consumption, we

mean not only what is literally consumed as opposed to invested,

but also the monetary expenditures that contribute to one's standard

of living in a general sense, such as charitable contributions.

Consumption is thus short for "level of expenditure". We begin by

asking an individual how much consumption (measured in today's dollars)

he expects to have at each year in the future. For the purpose of

constructing a simple preference model, we then ask what constant level

of consumption c over his lifetime would make him indifferent between

this level and his present prospects. We call this the constant annual

consumption for that individual. Now we give him choices between the

different futures described by different constant annual consumptions

c and different lifetimes, and find to what combinations he is

indifferent. The results of this process would appear as in Figure 6.1.

Here c is the constant annual consumption and k is the lifetime.

Each curve represents the various (c,k) values to which the individual

is indifferent; they are indifference curves for the consumption-

lifetime choice. Naturally, the individual would prefer to be on an

indifference curve that is as far from the origin as possible.

A typical question may help to describe the procedure. We

would ask, "Which do you prefer--20 years of life at $10,000 annual

consumption or 10 years of life at $30,000 annual consumption,

given that you only had these choices?" He might say that he
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preferred 20 years at $10,000. Therefore, we would increase

the consumption involved in the second choice. If we increased

the $30,000 to $40,000 and he was then indifferent, we would

have established the equivalence between ($10,000, 20 years)

and ($40,000, 10 years) as far as this individual was concerned.

This means that points A and B must lie on the same indifference

curve, as shown in Figure 6.1.

Each person has a joint probability distribution on annual

consumption and lifetime {c,k) assigned on the basis of his own

information or after consultation with experts. This distribution

permits computing the expected lifetime 1 from the marginal

distribution on z. We can use the consumption values correspond-

ing to 1 in Figure 6.1 to establish an index, or numeraire, on the

utility curves. Thus for any (c,k), we find the (w,l) to which

the individual is indifferent and call w the equivalent consumption

for expected lifetime that the individual prefers equally to the

original (c,k) or simply the worth of the (c,z) pair, w(c,z).

If we used additional dimensions, like bequests, we could reduce them

all to an equivalent w in this way. Thus any certain prospect for

consumption and lifetime faced by the individual can be converted

into an equivalent consumption for his expected lifetime.

Since the individual's future is, in fact, uncertain and

described by {c,k}, we need to measure his risk preference to have

a unique way of valuing his future. To illustrate how to do this,

suppose that we consider three equivalent consumptions for expected
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lifetime w1, w2, w3, that w1 > w2 > w3, and that the individual

prefers them in that order. Then we would offer him a lottery on

w, and w3 with probability q of winning w, and ask him for

what value of q he would be indifferent between the lottery and

receiving w2 for sure; the choice is diagrammed in Figure 6.2.

For example, we might find that he is indifferent between receiving

$20,000 a year for his expected life and participating in a lottery

that was equally likely to result in consumptions of $30,000 or

$15,000 for the same period. Answers to a sufficient number of

questions of this type will allow us to complete the individual's

preference assignment by measuring his risk preference. The result

will be a utility function u(.) on w, and hence on any

(c,f) pair.

Suppose now that the individual faces a future life lottery

described by {c,z}. The utility to him of this lottery will be

fu(w(c,z)) {c,XI

We can determine w, the amount of guaranteed annual consump-

tion for expected lifetime that is equivalent to this lottery by

setting the utility of w equal to the utility of the lottery:

u(w) fu(w(cz4) {cXl
C,Y.
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Suppose that the individual' is offered a proposition that

could change his level of consumption and his length of life,

possibly in a random fashion. For example, suppose he is offered

the proposition with the black pill for a specified probability of

death and payment (p, x). This will simply change his future life

lottery {c, 11 and hence establish a new certain equivalent annual

consumption ;Y' (p, x). To determine the value of x to which he

should be indifferent for a given p, we simply adjust x until

;; (p, x) is equal to ?i, the certain equivalent annual consumption

he would have in the absence of the proposition. Thus we can use the

individual's information and preference to establish the (p, x) pairs

to which he is indifferent.

Before proceeding to a discussion of the results of this

procedure, we should note that it is readily extendable to include

non-uniform consumption, bequests, and taxes. These modifications

make computations somewhat more complex but do not change the

fundamental nature of the approach.



7. The Form of Results

A possible result of this type of analysis appears in Figure 7.1.

The upper curve shows the payment x that the individual would demand

to accept a black pill that would kill him with probability p. The pay-
6

ment ranges from less than a dollar when p is less than 10" to over

a million dollars when p is about 1/30. It is entirely possible

that the curve will become vertical at some value pmax less than

one. Risks with p > Pmax we shall call "unacceptable". Playing

Russian roulette may be a risk in this category for most people.

The lower curve shows the value v that the individual would

supply to an expected value criterion delegation process. This

value is computed by dividing x by p, since the expected value

criterion requires that x = pv be the payment for the black pill.

This value v will typically become constant for small p and

increase as p represents an increasingly more serious risk. Note,

as we have indicated, that there may be a value of p such that the

individual does not want the expected value procedure used for p

greater than this value. We call such risks "undelegable". He is

essentially saying to his agent, "When risks are this large, I want

to consider the effect of the proposition on my life lottery before

arriving at a decision." He would expect major medical operations

to fall in this category.

Notice in the upper curve that when p is small enough, the

value of x may be only a few dollars. It is likely that for p's

-29-
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in this range, the individual would be happy to let the agent make

the decision without paying the individual any compensation. We

call these risks "delegable without compensation". However,

when x becomes of the order of tens or hundreds of dollars, the

individual would require that the compensation actually be paid.

Such risks are "delegable with compensation".

Thus we have specified four ranges of life risk: unacceptable,

undelegable, delegable with compensation, and delegable without

compensation. The taxonomy is diagrammed in Figure 7.2. An agent

making life-risking decisions can only act ethically regarding risks

that have been explicitly delegated. The v versus p curve can

be very helpful in assuring that the agent is, in fact, properly

incorporating the preferences of his principals. Both this curve

and the undelegable portion of the x versus p curve may be

useful to the individual in arriving at personal decisions; for

example, decisions to ski, skydive, or race automobiles.
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8. A Simple Quantitative Model

To demonstrate the type of analysis proposed, let us simply

assume that the individual has some constant annual consumption c

that he will receive throughout his life regardless of its length*,

and that he is not concerned with bequests. The only question in

his mind is then how long he is going to live, L. Thus if he does

not accept the black pill proposition, he will receive the utility

u(c,z) = u(w(c,z)) with probability {} and hence expected

utility f{z} u(c,k). This is shown by the upper branch in the

decision tree of Figure 8.1. If he accepts the black pill proposition,

then he will die with probability p and have neither life nor

consumption with utility u(O,O). If on the other hand he accepts

the proposition and lives, an event with probability 1-p. then he

receives x , an amount he can use to supplement his consumption. Let

us suppose further that if he is given a lump sum x , he will use it

to buy an annuity that will allow him to increase his consumption by

x, for however long he might live. The constant will depend

on i, the prevailing interest rate, and on his life distribution {z}

in a way we shall presently discuss. Thus if he lives, he will receive

an expected utility f{z} u(c + Cx,z).

If the individual is to be indifferent between accepting the

proposition and not at the current value of (p,x), then the expected

utility of the "accept" and "reject" branches must be the same, and

*The effect of uncertain consumption is explored in Section 14.
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we have,

f} u(c,) = p u(O,O) + (1-p) f{} u(c + rx,X) (8.1)

Using < > for the expectation operator, with respect to t in

this case, we obtain

<u(c,)> = p u(O,O) + (l-p) <u(c + cx,z)> - (8.2)

Converting the Payment into Consumption

Before proceeding further in our analysis, let us return to

the factor . We assume first, and for simplicity only, that the

sellers of annuities use the same distribution on life remaining

{W} that the individual assigns. If the prevailing interest rate*

is i, if the individual receives an annual payment cx beginning

today (if he lives), and if he lives k years, then the present

value of the payments will be

Cx [I + I +.+ ( I (8.3)
S+ i

or

1- -+i j + i1

1
1-

1+i

*All payments and interest rates are measured in terms of current
dollars, and thus avoid the question of inflation. The analysis
could be readily extended to include the individual's beliefs
about inflation.
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If the seller is indifferent to selling this annuity for x ,its

expected present value must be x

x x +1

3- + {. ((8.4)

or

(8.5)
+~ 

<

Thus, it is a relatively simple matter to compute once i and

a lifetime distribution are specified.

These results assume a special form when the interest rate

i is zero. First, Expression 8.3 becomes simply t I

This, in turn, makes Equation 8.4 read

x x ,(8.6)

andwehav 1(when i = 0). (8.7)

Thus, in the absence of discounting, the amount of lifetime annuity

that any investment will buy is obtained by dividing the investment

by the individual's expected lifetime.
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As the interest rate decreases, the seller of the annuity

discounts his future payments less, and hence offers a smaller annuity

in return for a given payment: is lower. The interest rate zero

corresponds to the lowest value of , the value given by

Equation 8.7.

The Maximum Acceptable Probability of Death, pmax

Now we obtain the benefits of our work. First, by solving

for p in Equation 8.2,

<ucP) = <uc+~ )> (8.8)
u(o,o) - <u(c + (x,)

we obtain an equation that will allow us to find the p

corresponding to any x once the utility function is specified.

Since p-pmax as x-o, we have

Pmax U (uCc, )> - (u(-cI)> _ <U(' ,,)> - <U(c,z) >  (8.9)
u(o,o) - <u(,t)> <u(,)> - u(o,O)

as the equation that will determine pmax from the specified

utility function.
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The Small-Risk Life Value v

Since we may expect an individual (a) to prefer a life with

unlimited consumption at least as much as the future life lottery

he currently faces, and also (b) to prefer his current situation

at least as much as death, we have

> u(O,0)

This means that unless equality holds throughout, the maximum

acceptable probability of death pmax must lie between zero and

one,

0 < Pmax <1

If condition (a) is a strict preference, as we would generally

expect, then <u(-,t)> > <u(c,t)> and Pmax > 0 . This means

that there will be some life risks so small that the individual can

be induced to undertake them for money. If condition (b) is a strict

preference, as we would generally expect, and if <u(c,z)> is not

infinite (there is no consumption so large that the individual prefers

any non-zero probability of achieving it, however small, to his

present prospects), then <u(c,z)> > u(O,0) and Pmax < 1. This

means that there will be some life risks so large that the individual

cannot be induced to undertake them for money.

Consequently, virtually no one can say that he will not risk

his life for money or that he will accept any risk for enough money.
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Let us now investigate the situation where the probability

of death is small. If x(p) is the minimum payment required to

accept a death probability p and if v(p) is the value of life

that would lead to this payment in an expected value sense, then

x(p) : pv(p)

or

v(p) =x(p)

When x is small, we expect v(p) to approach some small risk

value of life vs  under conditions that we shall soon explore,

9, im v(p)V s =p+O VP

Then we have

: UM v(p) = UAm x(p)
s pO p0 p

This limit is indeterminate since x(O) = 0. However, by

l'Hopital's rule,

- dx 1
dp - p(8.10)

p =0 dx
x 0 p= 0

x 0
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We now differentiate Equation 8.2 with respect to' x,

o dx ,)-dx <uc>+

With x = , p = 0 we have,

0 9PI (u(OO) - <u(c. 1)>) + <acu(dx\c
p= 0
x= 0

or o (u(c,I)> - u(o,o)vs = - .
Bc  (8.11)

2p 0 a u(c,1
X= 0

This equation allows us to compute the small-risk value of life

directly from the utility function, c, c, and the lifetime

distribution.

We can provide some insight into this result by developing

it in another way. If an individual faced a small black-pill

probability p of death and had a small-risk life value vs

then he would ask vsp to assume the risk. He would then

turn this payment into annual consumption increases of vsPS.

This increase in annual consumption would increase his utility

by

On the other hand, his utility from the prospect of taking the

pill is

(l-p) Ku(c,)> + pu(0,O)
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rather than his present utility of <u(c,z)> . The difference

is

-p [<u(c,Z)> - u(O,O)]

The utility increase from the increased consumption plus the

utility decrease from the death risk must net to zero if he is

to be indifferent:

PC <- c u(ci)> - p [(u(cz) - U(OO)] = 0

If we now divide by p and solve for vs , we obtain Equation 8.11.

We see that the small-risk value will increase as the utility of

the individual's future prospects Ku(c,Z)> is large compared

to his utility of death u(0,0) , and as his expected utility

of a unit of additional consumption

decreases.

Note, too, that the small-risk value of life v is inversely

proportional to C . As the interest rate i decreases, C

decreases, and hence vs  increases. An interest rate of zero

would thus produce the highest value of vs * This result makes

sense because as the interest rate decreases the individual will

receive less future consumption in return for any payment and so

he will require a larger payment before agreeing to a given risk.
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We can examine Equation 8.11 to determine when the small-

risk value of life will exist. First, we note that the numerator

will be positive when the individual prefers his present situation

to certain death, the strict form of preference (b) above. Second,

we observe that - u(c,z) will be non-negative if we reasonably

assume that the individual's satisfaction will not be decreased by

additional consumption in the sense we have defined it. Further-

more, if - u(c,k) is positive for at least one (c,z) pair

that has positive probability, then the denominator of the v

expression will be positive. This will happen as long as it is

possible for the individual to encounter a life state where

increased consumption would bring increased satisfaction, a

condition that will usually be the case. Thus, in almost every

practical situation vs will exist. The question of how small p

must be before v s(p) is well-approximated by vs depends upon the

specific utility function selected.

The Worth Function

Now let us become specific about the utility function,

u(cP) = u(w(c,z)). For the worth function specifying

indifference curves between c and Z, we shall assume the form

w(c,)c 0 (8.12)
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Here is the expected lifetime remaining at the time the worth

function is assessed. We include it simply to have a convenient

numeraire. There is no implication that the worth function will

change as expected lifetime changes due to the passage of time or

other changes in the life lottery. Thus, at the time of the

assessment, we can equivalently think of z as specifying the year

of death and i as the expected year of death.

Suppose that an individual were assured to live his life

expectancy. Then n = 2, for example, would mean that if we cut

his life in half, we would have to quadruple his consumption to make

him indifferent to the change. Higher powers of q would require

greater increases in consumption.

Risk Preference: Exponential

For risk preference u(w) we shall use the exponential

form

u(w) = -e-Yw -e - w/P (8.13)

where y is the risk aversion coefficient and p, its reciprocal,

is the risk tolerance, in this case as specified for lotteries on

worth, or equivalent annual consumption. Then we have

u(c,k) : u(w(c,k)) -e-Yc ( )n (8.14)

and

u(c,) = Y )n eYc . (8.15)
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With these specifications, Equation 8.8 becomes

p eYc( )) Y(c + 4x) ( >(8.16)

1 KeY(c +x)(,)n)

One interesting observation at this point is that as

x-, P- Pmax as given by

pma eYc ) (8.17)

Pmax ,

which must, of course, be less than one. By referring to

Equation 8.14, we note that pmax for the exponential utility

function we have chosen is just the negative of the expected

utility of the future life lottery. Thus, we have obtained not

only an equation to use in determining the x versus p curve,

but also a way to compute pmax for this form of utility function.

With the same specifications, the small-risk value of life

from Equation 8.11 becomes

vs  : ec( (8.18)

and we can determine vs  directly when appropriate.

-44-



The Economic Life Value, Ve

For purposes of comparison, it is interesting to compute

an "economic" value of life v based on the expected discountede

consumption. An annual consumption c would have an expected

present value ve determined from

c = 4ve (8.19)

where c is defined by Equation 8.5. Thus,

Ve _ c _ cv (8.20)

where

1 (8.21)

is the number of years of consumption that would equal the economic

value, a frequently useful quantity.

Note that when i = 0, = as given by Equation 8.7.

Hence in this case

(i :0) (8.22)

and

ve = c (i0) o)(8.23)

When the interest rate is zero, the economic value of life

becomes simply the annual consumption multiplied by the expected

lifetime.
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The Case of Risk Neutrality

We can determine very easily the special forms these results

assume for an individual who is risk neutral for lotteries on

equivalent annual consumption. This means that the individual has

a utility function u(c,f) that is linear in w(c,k) (and hence

<u(,z)> is infinite). For such an individual y approaches

zero, and we see immediately from Equation 8.17 that pm3x = 1: the

individual will accept any p for a large enough x. As y

approaches zero, Equation 8.16 becomes approximately

Kl1 - -yc - 1-y(c + x ) T>

1~ -y(c + tx) Tn>

y (c + tx) T>

(8.24)
c +x

with the final expression holding exactly for y = 0. By solving

for x we obtain

x-P -(8.25)
S -p

e l-p
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When the individual is risk indifferent, the required payment x for

a given p is just the economic value of life multiplied by p,
1-p

the odds of dying. The payment becomes infinite as p

approaches one. This same expression shows that the small-risk

value vs  is just the economic value ve, a result confirmed by

finding the limiting form of Equation 8.18 as y approaches zero.

The Case of Certain Lifetime

As a final special case, consider the interesting, but

highly improbable, situation where the individual believes that

he will live his expected remaining life i, no more, no less.

Then we find Pmax from Equation 8.17,

Pmax = eYc (8.26)

and the small-risk value from Equation 8.18,

v - l'eYc eYC- , (8.27)
s -Yccye

where

(8.28)

from Equation 8.5.
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9. The Assessment Procedure

Specifying the model requires assigning values to the remaining

life distribution, the interest rate i, the equivalent annual

consumption c, the risk tolerance p = 1 and the consumption-
Y

lifetime tradeoff parameter n.

The lifetime distribution {Q} can be directly assessed or

more commonly based upon mortality tables, The type we shall use

appears in Table 9.1 [7]. The corresponding probability mass

function appears as Figure 9.1. If we use the mortality table, we

need only know the person's age in order to truncate and renormalize

it appropriately. We shall assume that our "base-case" individual is

a male of age 25. This will give him an expected remaining life of

46.2 years. We shall deal in before-tax inflation-free dollars and

let the interest rate and the annual consumption be assessed in these

terms. We assume that the base-case individual believes that the

interest rate is 5% (i = 0.05) and that his equivalent annual

consumption will be c = $20,000.

Now we must assess risk preference. We shall use two methods.

The first will be to offer the individual a lottery on annual lifetime

consumption that will increase it by y and decrease it by y/2 with

equal probability. For example, with y = $2000, the lottery would

be able equally likely to give him a lifetime consumption of $22,000

or $19,000. If he likes the lottery, we increase y until he is just

indifferent between accepting it and not. Suppose that for the base-

case individual this happens when y = $6000: he is just indifferent

between his present situation and a lottery that will provide him for

life with an annual consumption of $26,000 or $17,000 with equal

probability. At this point, we would say that his risk tolerance p

is approximately $6000.
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Table 9.1

Life Table for White Males, U.S.

of 100,000 Born Alive, Number Dying During Age Interval

Number Dying Number Dying Number Dying Number Dying
During Age During Age During Age During Age

Age Interval Ae Interval Ag Interval Ae Interval

0 2592 28 137 56 1295 84 2280
1 149 29 141 57 1383 85 2096
2 99 30 147 58 1486 86 1898
3 78 31 154 59 1598 87 1693
4 67 32 161 60 1714 88 1490
5 60 33 170 61 1827 89 1288
6 55 34 180 62 1935 90 1086
7 52 35 194 63 2039 91 888
8 47 36 210 64 2136 92 709
9 43 37 229 65 2231 93 548

10 40 38 251 66 2323 94 413
11 40 39 278 67 2409 95 300

12 46 40 306 68 2487 96 216
13 56 41 339 69 2559 97 152
14 73 42 376 70 2621 98 103
15 90 43 415 71 2678 99 70

16 107 44 458 72 2729 100 45
17 121 45 505 73 2775 101 29

18 134 46 556 74 2815 102 17
19 143 47 613 75 2841 103 11
20 153 48 681 76 2853 104 6
21 162 49 754 77 2855 105 3
22 167 50 835 78 2844 106 2
23 163 51 916 79 2821 1071
24 157 52 995 80 2789 108 1
25 149 53 1071 81 2738
26 141 54 1144 82 2639
27 137 55 1216 83 2482
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A second way to assess p is to ask for what probability Pd

of doubling his consumption to 2c and l-Pd of halving it to

c/2 he would be just indifferent to receiving c, in each case for

life. A value of Pd of 0.82 would also correspond to a p of

$6000. That is, someone with a p of $6000 would be just indifferent to

4.5 to one odds of doubling or halving his consumption. Naturally,

as Pd increases, the risk tolerance decreases, The relation is

e2Z -

Pd - 3 where z = p/c (9.1)

e 2z - 1

This relation between Pd and p/c appears as Figure 9.2. As

p/c and hence z becomes unboundedly large, the individual

should make decisions on an expected value basis. The limit of

Pd as z approaches infinity is readily found to be 1/3.

With Pd = 1/3, the expected consumption to be obtained from

the lottery is just the present consumption, c.

If these two procedures provide different values of p, one

can ask the individual with respect to which answer

he is more comfortable and then adjust the other until a

reasonable value is obtained.

The last task is to assess n. Suppose that an individual

faces the prospect of receiving annual consumption c for his

expected lifetime 1. The question is then if we change his lifetime

to ai, what new annual consumption ac would just make him

indifferent to the original arrangement. That is
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w~~)= w(c j

C = ( C,

cI = ac n

or

n - (9.2)In a

This question can be asked for 0 both greater and less than one

and the results compromised, if necessary.

Suppose, for example, that when we faced the individual with a

5% reduction in life (a = 0.95), he responded that he would need

a 10% increase in consumption ( 1.1) to make him equally happy.

Then

S- In - 1.86
In 0.95

For our base-case individual, we shall use n 2. This means,

as we have said, that halving the lifetime requires quadruplir;

the consumption ( = I, = 0.5). A fairly complete set of

tradeoff curves appears in Figure 9.3.
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10. Numerical Results*

The mortality table plus age 25 specifies {I}, and we have

determined c =$20,000, p= $6,000, 1 0.05, n = 2. Thus we

have all the information necessary to exercise the model. The

results appear in Figure 10.1. The small-risk value of lifev

is $2.43 million dollars. The value of life grows to $100 million

dollars when p is about 0.1. No payment will induce the

individual to assume a risk of dying greater than p max = 0.103.

This individual would not play Russian roulette under any circumstances.

If we define the range of delegable decisions to be those for which

v is approximately v s, we see that this individual might be willing

to delegate for p as large as 10 . A compensation of at least

$10 would be required whenever p exceeded 4 x 10-

These results determine the answer of the base case individual

to the black pill problem posed in Figure 5.1. With vs = $2.43

million and p= I thcopnainxwudb10,000 th1 opnain xwudb

approximately v sp = $243, as indicated by the upper curve of

Figure 10.1. Since the $1000 offered for taking the pill exceeds

$243, the individual would be consistent in accepting the black pill

proposi ti on.

The economic value y e is $363,000, obtained from c = $20,000

and v= 18.15. This value is roughly comparable to those based on

traditional economic approaches. Note that the small risk value vs is

about 6.7 times the economic value. If this model and the numbers

*The computations in Sections 10 and 11 were originally performed by
Dr. Mary D. Schrot.
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used in it are representative, the economic values that have been

used in past governmental decision making would considerably

underestimate the individual's own value.

Table 10.1 shows how the results depend on each of the model

parameters. The first row of lines shows the effect of changing the

base case by varying consumption from $10,000 to $30,000 per year.

The first line shows that the small risk value v5  will vary from

$0.529 million to $6.648 million, a very large change. The next line

shows that the economic value will vary from $182,000 to $545,000.

The economic value is in direct proportion to consumption, as required.

The third line displays the ratio of these quantities, which exhibits

a wide variation from 2.91 to 12.20. Finally, the right side of the

table shows the effect on Pmax" When consumption is $10,000, Pmax

becomes as high as 0.24; when consumption is $30,000, Pmax falls to

0.0611. Thus, when consumption is increased, but risk tolerance and

the other parameters remain fixed, the individual becomes less willing

to take large chances with his life.

The second row shows the effect of varying risk tolerance

from $10,000 to $3000. This has the effect of sweeping the small-

risk value of life from $1.277 million to $6.903 million. The economic

value does not change since it does not depend on p. This range of

risk tolerance variation causes Pmax to fall from 0.195 to 0.0431, as

we would expect.
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Table 10.1

Sensitivity Analysis

Base case: c = 20,000 p = 6,000 vs ($ million)

i = 0.05 n =  2 ve ($ million) Pmax

Age 25 Vs/V e
Nominal Nominal Nominal

C: 10,000 20,000 30,000 0.529 2.430 6.648 0.240 0.103 0.0611

0.182 0.363 0.545

2.91 6.69 12.20

p: 10,000 6,000 3,000 1.277 2.430 6.903 0.195 0.103 0.0431

0.363 0.363 0.363

3.52 6.69 19.02

c: 10,000 20,000 30,000 1.215 2.430 3.645 0.103 0.103 0.103

p: 3,000 6,000 9,000 0.182 0.363 0.545

6.69 6.69 6.69

i: 0.10 0.05 0.025 1.421 2.430 3.622 0.103 0.103 0.103

0.212 0.363 0.541

6.70 6.69 6.70

n: 3 2 1 2.418 2.430 2.541 0.140 0.103 0.0640

0.363 0.363 0.363

6.66 6.69 7.0

Age: 35 25 15 2.157 2.430 2.671 0.125 0.103 0.0920

0.334 0.363 0.381

6.46 6.69 7.01
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However, varying risk tolerance from $10,000 to $3,000 for

a person with $20,000 annual consumption is quite extreme. For

such a person, a risk tolerance of $10,000 corresponds to a

doubling probability Pd of 0.67, whereas a $3,000 risk

tolerance implies a Pd of 0.96. These values are considerably

different from the 0.82 value for Pd that we have assumed. A

value of Pd near 0.8 seems to be most often favored among the

individuals I have interviewed.

Another interesting analysis is to vary c, but to maintain

c/p constant. This is done in the third row of the table. We

observe that the small-risk value varies from $1.215 million to

$3.645 million. However, the small-risk value remains proportional

to the economic value. The reason is apparent when we divide

Equation 8.18 by Equation 8.20.

v _ 1<,Yc (11 )

yc _eYc

The ratio v /v depends on c and p only through the

ratio c/p = yc.
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We also note that p wax remains at 0.103 throughout the

variation. Equation 8.17 shows that pmax also depends on

c and p only through c/p. Ceteris paribus, if an individual

changes his risk tolerance in proportion to his consumption, his

Pmax will remain unchanged according to this model.

Row four shows the effect of varying the interest rate from

0.10 to 0.025. The small-risk value vs grows from $1.421 million

to $3.622 million as the interest rate decreases: low interest

rates lead to high small-risk life values because the individual

requires a higher payment to yield the same consumption increase.

Note, too, that vs is proportional to the economic value ve -

Equation 10.1 confirms the appropriateness of this result by

revealing that the ratio vs/Ve depends in no way on the interest

rate. Equation 8.17 likewise reveals that pmax does not depend

on i, as we observe.

Row five illustrates that the small-risk value vs changes

only slightly from $2.418 to $2.541 million as n is varied from

3 to 1. The economic value does not change since it does not

depend on n. However, the variation in n does have a major

effect on pmax' decreasing it from 0.140 to 0.0640. For the given

lifetime distribution, the larger is n, the less highly the

individual values his present life lottery. Hence he will accept

smaller payments to incur a given small additional risk and he will

be more willing to take very large risks.
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Row six demonstrates the effect of age. A 35 year old has

a small-risk value of $2.157 million; a 15 year old a small-risk

value of $2.671 million. The ratio between v5  and ve does

not change much in this age range. The maximum acceptable

probability of death falls from 0.125 for the 35 year old to

0.0920 for the 15 year old. The older you are, the less you have

to lose.

A more extensive analysis of the effect of age appears as

Table 10.2. Here we see that if the base case individual were 45,

his small-risk life value would be about 3/4 of the small-risk value

at age 25. At age 60, it is about 1/2 the age 25 value. The ratio

of small-risk value to economic value continually decreases, while

Pmax stays about 0.25 beyond age 75. If the base-case individual

manages his investments so that his equivalent annual consumption

stays at $20,000 throughout his lifetime, then Figure 10.2 shows

how the individual's criteria for life-risking decisions change as

he moves from childhood through retirement.

As a final sensitivity, we can determine the effect that

uncertain lifetime plays in base case results by comparing them

with the case where remaining lifetime is certain to be = 46.2

years. From Equation 8.26 we find pmax = 0.0357 while from

Equation 8.27 we have v. = $3.049 million. Thus, the

uncertainty in lifetime has caused pmax to increase by a factor

of about three, and has caused the small-risk value vs  to decrease

by about 20%.
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Table 10.2: The Effect of Age

Expected Small-Risk Economic
Remaining Life Value Value

Age (yr.) v s(Smillion) v e(Smillion) Vs/Ve Pmax

15 55.4 2.671 0.381 7.01 0.0920

25 46.2 2.430 0.363 6.69 0.103

35 36.8 2.157 0.334 6.46 0.125

45 27.8 1.838 0.293 6.28 0.158

55 20.0 1.464 0.242 6.04 0.195

65 13.5 1.080 0.187 5.77 0.228

75 8.4 0.703 0.132 5.31 0.253

85 4.8 0.401 0.084 4.78 0.272

95 4.6 0.227 0.054 4.19 0.266
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To assure that the results do not depend heavily on the

mortality table used, the computations were repeated for a different

mortality table [11] for white males. For the base case individual,

expected remaining life is 45.9 years, small-risk value, $2.532

million, and p max' 0.100. These results are within a few percent

of our previous values.

The same table contained mortality data for white females.

For a female base case individual, expected remaining life is

51.6 years, small-risk value, $2.815 million, and pmx 0.080.

The longer expected life of the female causes a substantial increase

in small-risk value and a reduction in p max'
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11. The White Pill

Our presentation up to this point has emphasized the question

of what we must pay an individual to undertake an additional risk.

However, the individual and society often face the problem of

spending resources to avoid risk or in other words increase

safety. The same theoretical model serves to illuminate this

problem with only a few small twists.

Suppose that an individual faces a hazard that will kill

him with probability p, for example, an operation. If he

survives, he will live his normal life with whatever wealth he

possesses. However, now someone arrives with a white pill that

if taken will surely eliminate the death risk from this hazard.

How much, x , would the individual be willing to pay for the

white pill? The situation is diagrammed in Figure 11.1.

The unusual feature of this situation is that, of course, x

cannot exceed W, since the individual cannot pay more than his

wealth for the pill no matter what death risk he faces. We might

expect the x versus p curve to look like that of Figure 11.2.

The individual will pay more as p increases, but the payment is

limited by his wealth.

The simple model corresponding to Figure 8.1 appears as

Figure 11.3. Buying the white pill at cost x reduces future

consumption to c - t x, where C is as defined in Section 8.

We thus presume that the individual would borrow
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against future consumption the same amount each year in order

to pay x. Of course, x must be less than c. If the

individual refuses the pill, then he dies with probability p

and continues his life of consumption c with probability 1-p.

For him to be indifferent between the two alternatives, we have

<u(c -4xI>= p u(OO) + (l-p) <u(cI)> (11

or

<u(c- x,)> - <u(c,l)>p u( ,)-< ( ,) (11 .2)
u(o,o) - uc •

This equation provides the relation between p and x. We

observe, as required, that the equation is satisfied by

p 0, x = 0. The small-risk value of life is again given by

1 (11.3)s dp
dx = 0

x=0

and since

d = u(c- x4)> (11.4)

?x U(0,0) - <u(cx4)

we have immediately that

1 < u(c,) - u(0,0)(11.5)

dx u .

x:0
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which is the same value of vs  specified by Equation 8.11 for

the black pill case. Thus the small-risk value of life is the

same whether we consider small increments or decrements in life

risk, a satisfying result.

We can again show the reasonableness of this finding by

adding the decreased utility of the payment for the white pill

when p is small, - p vs r <-- u(cz)> , to the increased

utility from taking it, <u(c,Z)> - [p u(O,O) + (l-p) <u(c,Z)>],

and setting the sum to zero to reflect the individual's indifference.

After dividing by p , we solve for v5  and obtain the result of

Equations 8.11 or 11.5.

Now we use the utility function of Equation 8.14 to specify

these results for the simple model. From Equation 11.2, we have

<-y(c - x)efl -c
(11.6)

1 1-Ke -yc(-)n>

Note that as p approaches one, c - x must approach zero

or
c

x= =e

the economic value of life. As death becomes increasingly certain,

the individual becomes willing to pay his total economic wealth

to avoid it.
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We can easily make these calculations for the hypothetical male

subject of age 25 and with c $20,000, p = $6,000, i = 0.05,

and n = 2. The x versus p curve appears in Figure 11.4. Note

that as p approaches one, x approaches ve = $363,000, as

predicted. The same figure shows that the value of life v

computed from x = vp is approximately equal to vs = $2,430,000

3
for p less than 10- , but that it approaches ve as p approaches

one. Both the x and the v curves show how the economic situation

of the individual limits his tradeoff between consumption and life

when p approaches one.

We observe in passing that the sensitivity analysis of Table 10.1

is equally relevant to the white pill case.
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The Value of Risk Reduction

As a consequence of the white pill discussion, we can use the base

case individual's small-risk life value to see what he would be willing

to pay annually to remove various risks in his life. Table 11.1 shows

U.S. accident statistics for 1966 both in terms of number of deaths and

death probability. The final column shows what the base case individual

would be willing to pay to eliminate these hazards, an amount obtained

by multiplying the probability of death by the small-risk life value.

Note that he would be willing to pay $900 just to eliminate threats due

to motor vehicles and falls. All other sources of accidents contribute

collectively to an expected loss of less than $500. This calculation is

an important starting point for determining whether feasible safety

expenditures to modify these hazards would be worth while. It is clear

that spending $1000 to be free of motor vehicle accidents would not be a

wise choice for the base case individual. There is a limit to the value

of safety.
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Table 11.1

U.S. Accident Death Statistics for 1966

Probability Base
Total of Death per Case

Type of Accident Deaths Person per Year Payment

Motor vehicle 53,041 2.7 x 10 $ 656.00

Falls 20,066 1.0 x 10- 243.00

Fire and explosion 8,084 4.0 x 10- 97.20

Drowning 5,687 2.8 x 10 -568.00

Firearms 2,558 1.3 x 10- 31.60

Poisoning (solids and liquids) 2,283 1.1 x 10- 26.70

Machinery 2,070 1.0 x 10 -524.30

Poisoning (gases and vapors) 1,648 8.2 x 10 -619.90

Water transport 1,630 8.1 x 10 -619.70

Aircraft 1,510 7.5 x 10 -618.30

Inhalation and ingestion of food 1,464 7.3 x 10 -617.70

Blow from falling or projected object or missile 1,459 7.3 x 10 17.70

Mechanical suffocation 1,263 6.3 x 10 15.30

Foreign body entering orifice other than mouth 1,131 5.7 x 10 613.90

Accident in therapeutic procedures 1,087 5.5 x 10- 13.40

Railway accident (except motor vehicles) 1,027 5.1 x 10- 12.40

Electric current 1,026 5.1 x 10 12.40

t~ier and unspecified 6,163 3.1 x 10- 76.50

'4

Total 113,563 5.8 X 10 $ 1,384.00
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Russian Roulette

While we are most interested in the implications of our

model for the case of small risks, it may be instructive to see

what it prescribes in more parlous situations. An interesting

example attributed to Richard Zeckhauser concerns Russian Roulette.

The game is to place one or more bullets in a six-chambered

revolver, spin the cylinder, place the barrel against the temple

and pull the trigger. Some game! The question that Zeckhauser

poses is whether a player forced to play this game would pay more

to remove one bullet from a cylinder containing two bullets than he

would to remove one bullet from a cylinder containing only one

bullet. Assuming that each bullet represents a 1/6 chance of death,

the question is whether the person should pay more to reduce his

death probability from 2/6 to 1/6 or from 1/6 to zero.

Table 11.2 shows how much the base case individual would pay to

reduce his death probability by 1/6 (remove one bullet) depending on

the initial death probability he faced. To remove the last bullet,

he would pay about $190,000, which is just the white pill x for

p = 1/6 from Figure 11.4. To remove the next-to-last bullet, he would

pay $208,000 or about $18,000 more.

These figures are consistent, and, of course, do not imply that

the individual would pay 208 + 190 = 398 thousand dollars to reduce

his risk from 2/6 to zero, for he simply cannot afford that much. To

see this we note that when the individual pays 208 thousand dollars to

change his death probability from 2/6 to 1/6, his consumption falls

-74-



Table 11.2

Payments to Reduce Death Probability by 1/6 in Russian Roulette

(Base Case Individual)

Initial Death Probability Payment for Reduction by 1/6

(Thousands of Dollars)

1.0 363

5/6 298

4/6 258

3/6 230

2/6 208

1/6 190
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from $20,000 per year to $8558 per year. If the individual is now

offered a further decrease from 1/6 to 0, he will pay only

51 thousand dollars because of his reduced financial circumstances

rather than the 190 thousand dollars he would have paid for this

change in his original state. The payment of 51 thousand dollars

will leave him with an annual consumption of $5766. The amount that

the individual would pay when he has consumption $20,000 to reduce

his death probability from 2/6 to 0 is 258 thousand dollars, not

398 thousand dollars. The payment of $258,000 would leave him with

an annual consumption of $5766, as required. Incidentally, when

our base case individual pays 190 thousand dollars to reduce a 1/6

probability of death to zero, his annual consumption remaining would

be $9537. Thus, buying his way out of one-bullet Russian Roulette

costs him about one-half his annual consumption.

The table shows that the amount paid to remove a single bullet

increases with the number of bullets in the gun. We can explain this

by observing that as the number of bullets in the gun increases, the

prospects of the individual diminish and hence money is less important

to him.

The case of removing one bullet from six is especially interesting

because we observe that the individual would pay his whole economic

value, $363,000, for this 1/6 decrease in death probability. Of course,

if he is facing certain death, and if he is unconcerned about having a

legacy, as we assume, he will pay $363,000 for any decrease in death

probability since any chance at life is better than none. At this

point we would have to examine what we mean by "certain death".
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It is alleged that many people find these results counter-

intuitive. They think that one should pay more to go from 1/6 to

0 than from 2/6 to 1/6. However, the few people in my life that

I have questioned on this point make choices consistent with the

implications of the model.
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Buying and Selling Hazards

Now that we have both the black pill and white pill results before

us, we are in a position to make a few general observations. First, we

see that the disparate results of the black and white pill cases for

p = I show that we have answered a continual objection to analyses that

place a finite value on life without regard to the black pill/white pill

selling hazard/buying hazard distinction. Since few people if any will

sell their lives for any finite sum, all such analyses are doomed to

failure. However, the present model shows that it is perfectly consistent

to refuse any finite offer for your life and yet be limited in what you can

spend to save it.

Of greater practical importance, however, is the result that for the

wide range of hazardous decisions where we are buying and selling small

hazards in our lives, the small-risk life value offers a simple and

practical procedure to assure consistency.
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12. Continuing Risks

Many of the risks to life occur not at a single instant, as

does the black pill, but rather over several years or even a

lifetime. The risks of living with automobiles, of smoking, or

of living near a power plant are of this type. To analyze them,

we must become more specific in characterizing the uncertainty

regarding the length of life.

We construct a time scale of regularly-spaced epochs

0,1,2,... The period between epochs 0 and 1 we call

interval 1, between epochs 2 and 3 interval 2, etc. Typically

our interval will be a year.

Let Pn be the probability that an individual will die in

interval n given that he is alive at epoch 0. Then pn for

n = 1,2,3,... is the lifetime mass function such as the one shown in

Table 9.1 and Figure 9.1. Let qn be the probability that an

individual will die in interval n given that he is alive at

epoch n-l, where n = 1,2,3,... We call qn the hazard or,

in the case of life, the force of mortality, for qn shows how

likely you are to die in each interval if you were alive at its

beginning.

The lifetime mass function and the hazard distribution are

simply related by the equations:

p, q,

Ph [n _n p n : 2,3,4,... (12.1)
j=
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We use these equations to compute the hazard distribution corres-

ponding to a given lifetime mass function or vice versa. Figure 12.1

shows as the solid curve labeled "empirical" the hazard distribution

corresponding to the lifetime mass function of Figure 9.1. On this

scale the hazard below age 30 is virtually indistinguishable from

zero. The points marked "approximation" show the results of the

formula

(n 30)

qn = 200 • 2 .10 30 < n < 110 (12.2)

which closely fit the empirical results. This approximation states

that hazard doubles every nine years beyond age 30. It is quite

clear why we are not going to escape from this world alive. For

purposes of comparison, the expected remaining life of a male after

25 has been computed for both the empirical curve and the

approximation; the results differ by less than 2%.

The Value of Hazard Modification

Now we return to our primary interest of investigating

continuing risks. Suppose that a person is offered a present

sum of money x to incur some modification M of his hazard

distribution and hence to face a new lifetime mass function

{1JM . What amount x, positive or negative, would make him

indifferent to the proposition? Figure 12.2 shows the choice with

the usual assumption that the amount x will be converted into an

annuity.
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Let us consider a number of possible hazard modifications.

Let M D be the modification of doubling q (with, of course, a

requirement that qn<1). Such a serious modification might be

comparable to that incurred by smoking heavily throughout life.

Let M H be the modification of halving hazard, a modification that

some may believe will result from a regular exercise program to

strengthen the cardiovascular system. Let M A be 4dig-000 to

every q Such a modification would be comparable to assuming a

new risk equal to the present risk from automotive vehicles.

1
Finally, let M S be subtracting 400O0 from every q n This

would correspond to removing the present risk from automotive

vehicles.

We shall consider each of these modifications against the

background of our base case (male, age 25, c = 20,000, p = 6,000

9= 2, i = 0.05). Table 12.1 summarizes the results. Doubling

hazard causes the expected lifetime to decrease by 7.8 years and

requires a present payment of $212,000 or a $12,400 annuity. (We

assume that the seller of the annuity is aware of the change in risk

when he computes c.) Halving the hazard increases life expectancy

by 8.0 years and would be worth $127,000 to the individual, or $6700

per year. Clearly these are both very significant modifications.

Adding 400 to hazard decreases life expectancy by 0.3 years

and necessitates a payment of $13,000, or $700 per year. Subtracting

from hazard increases life expectancy by 0.3 years and would be4000

worth $12,000 or $670 per year. '
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Table 12.1

The Effects of Hazard Modification

Modification: M K21M> K 11> x x

M D: Double qn38.4 -7.8 212,000 12,400

NH: Halve qn54.1 8.0 -127,000 -6,700

MA: Add to qn45.9 -0.3 13,000 700
4000

Ms Subtract 100 46.4 0.3 -12,000 -670

fromqn
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Thus we see that, as a continuing risk, living in an automotive

society costs this individual about $670 per year in risk cost alone.

He should be willing to pay up to this amount for a life "assurance"

policy that would assure that he would not be killed in a motor

vehicle accident. Of course, all memory of the policy would have

to disappear as soon as it was bought to prevent changes in behavior

caused by owning the policy.

Note that the $670 annual risk cost exceeds what the individual

would pay to avoid a 1 black pill risk, since I vs = $608.

The continuing nature of the risk makes it more consequential to our

base case individual. Nevertheless, the annual compensation for a

small change p in annuil hazard is conveniently approximated

by pvs.

As a final observation, suppose we consider the modification

of changing the hazard pattern by shifting it, and consequently the

lifetime mass function, one year into the future, therefore increasing

life expectancy by one year. The base case individual would pay

$21,600 as a lump sum for such a change. If we offer him the

modification of one year less expected life by shifting in the other

direction, he would require a payment of $23,500 to be indifferent.

We thus obtain an indication of what one year of life is worth to

this individual.
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Delayed Risk

The hazard modification formulation allows us to consider the

black pill problem in the case where the payment is made now, but

the pill is taken some number of years k in the future. We

simply add the black pill death probability p to the normal

hazard in year k in the future in the case where both p and

the normal hazard are small. Then the paradigm of Figure 12.2

allows us to compute the payment x associated with this

modification. If p is small, then we can compute the small

risk value vs = Pi x and determine how v5  depends upon the

delay k. Figure 12.3 shows the result for the base case. The

small risk value v5  is $2.43 million when the delay is zero, about

$2 million when the delay is 10 years, and about $1 million when the

delay is 22 years. By referring to Table 10.2, we find that the

v value associated with a k year delay of hazard is considerably

less than the value of v that the individual will have in k

years if he survives.
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Imposed Modifications of Hazard

We have just discussed the amount that a person would have to

be paid to accept a modification of hazard. But suppose that the

modification is suddenly imposed - the doctor tells him that he

has twice the death risk of a normal person, for example. What

will happen to the value he places on his life.as revealed by such

quantities as vs and pmax ? The answer appears in Table 12.2.

As the individual faces larger continuing risks in his life, he

must decrease v. and increase p max* He becomes more willing to

accept a new risk to his life for a given compensation.

Delegation Revisited

The analysis of continuing hazards shows that specifying a

utility function u(c,k) on consumption and lifetime not only

allows us to solve the black and white pill problems, but to

formulate any decision involving length of life and consumption.

If the utility function were given to an agent, he could make

all decisions within his authority without explicit consideration

of a small-risk value of life. Thus, there is no reason to

require the agent to make risk-neutral decisions. However, as

we have seen, the small-risk-life value is sufficient for the

individual or his agent to make most decisions that fall under

the rubric of safety.
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Table 12.2

The Effect of Hazard Modification on Life Value

Nominal 2.430 0.363 0.103

Modification: M vs (millions) v e(millions) Pmax

MD: Double qn1.433 0.340 0.178

MH Halve q4.329 0.380 0.057

MA: Add 4000toqn 2.389 0.362 0.108

M Subtract from q 2.473 0.364 0.098
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13. Other Utility Functions

It is interesting to compare our results for the present

simple model with those that would be implied by other utility

functions in the literature. Barrager [8] suggests a utility

function which in our notation would be written as

u(c,) = (cf) , (13.1)

with 6 = 0.5. We see immediately from Equation 8.9 that

this utility function requires that pmax be one. Using

Equation 8.11 for vs yields

- u(0,o)
V = _ _ _ _ _

c ,AC)> 4Kc'- I6)>

If c is not uncertain, we have

Vs t = v (13.2)
6 e

With 6= 0.5, this utility function implies a small-risk value

of life that is twice the economic value,

Usher [9) proposes the utility function

u(c,1) co ( )j (13.3)
j=0
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where 8 is a factor to account for the changing marginal

utility of consumption and "is believed to be about 1/3". Again we

find that pmax equals one. We compute v from
S

Vs <co
< jaa- X (T i) >

If c is again not uncertain, we have

V s c _ Ve (13.4)

The small-risk value of life would then be about three times the

economic value.

Both of these utility functions therefore yield values of

Vs/Ve that are much lower than our base case values. If we refer to

Table 10.1, we see that a ratio of 3 would require a p/c

of about 0.6 and hence from Figure 9.2 a Pd of about 0.6.

I have not yet met individuals who have assessed such low values

of Pd"

One might be tempted to modify the model by substituting

another risk preference curve u(w) for the exponential

- W -w/p
u(w) = -e = -e

One interesting choice would be the logarithmic utility
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u(w) = log (p + w).

But this choice has a problem. As we have said, people

typically require a probability of doubling as opposed to halving

consumption, Pd that is well in excess of 0.5. Recall that

for our base case individual, Pd is 0.82. With the

logarithmic utility curve u(w) = log (p + w), the values of

Pd range from 0.333 to 0.5 as p decreases from to 0.

Hence no logarithmic utility function can produce Pd'S in the

desired range.
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14. Consumption Uncertainty

While future life lotteries have always been considered in

the form {c,11 that allows a joint uncertainty in both c

and I , we have, in fact, not examined the case where the individual

is uncertain about his future consumption c. Suppose, for example,

that our base case individual faces the lottery on annual consumption

shown in Figure 14.1. Instead of $20,000 annual consumption, he

assigns equal chances to receiving either $15,000 or $25,000.

We can once more use Equations 8.11 and 8.17 to find v5 and

ma however, now the expectation is taken over the independent

uncertainties in c and!1. We learn that vs equals $1.962 million

and that pma equals 0.113, compared to $2.430 million and 0.103

for the base case. The small-risk value of life has fallen by

almost 20% because of the uncertainty in consumption level, and the

individual has increased his maximum acceptable level of risk by

0.01. This is consistent with our earlier observation that v

will decrease and Pmax will increase as the future life lottery

becomes less desirable to the individual.
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c $25,000

Figure 14.2: Uncertainty in Annual Consumption
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15. The Value of the Lives of Others

We may use an extension of this approach to investigate the

question of how much one should pay to save the lives of others.

Let us suppose that you are asked to contribute for a white pill to

be taken by an associate. How much, x , would you pay? We shall

use "l" to indicate you and "2" to designate the other person.

Figure 15.1 illustrates the situation. If you do not buy the pill

2 will die with probability p. In this case, his remaining life

k2 will be zero, but you will enjoy your present life prospects. If

2 does not die, then you both enjoy your future life lotteries. If

you do buy the pill for an amount x , your consumption after buying

it will be cl - Ix, your life expectancy will be unchanged and

person 2 will be restored to his original consumption-lifetime

lottery. We thus require your utility function u1(c1 , ki, c2, k2)

on your joint prospects, and at the point of indifference we can write

<u1(cl -Clx, ti, c2, L2)> = p<u1 (cl, Zi, c2 , 0)> +

(1 -p) <u1 (cl, il, c2 , Z2)> (15.1)

or

<u1 (cl - lx, k1, c2 , Z2)> - <u1 (cl, Z1, c2, t2)>

p =(15.2)
<u1 (cl, Zi, c2, 0)> - <u1(cl, k1, c2, £2)>

We can use this equation to solve for x versus p.
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BUY WHITE PILL

FOR x u, (ci "I x C1,III c 2 .2)
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Figure 15.1: The Value of Another
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If we are interested in v1 , the small-risk value that

person 1 assigns to person 2's life, then since for small

p, x VS12P , we can obtainvS12  from

v dpi
S12 (15.3)dX=p

.x= 0

By differentiating Equation 15.2, we find

dp - 1 < T-I Ul(C1 -ClX' ill C21 L2)>

d-x (15.4)
<uI(cl, Z2, , O)> - <u1 (cl, £i, C2 , k2)>

and hence

<ul(cl, £2, c2, Z2)> - <ul(cl, k1, c2, O)>

VS12 = u <-L (15.5)

To explore this issue in more detail, we must specify a form

for the utility function ul . Let

w= c w2 = c2 - (15.6)

be the self-worth functions for the two parties, each assessed by our
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usual methods. Let

W = W1 + fw 2  (15.7)

be the worth function used by party 1 in situations involving

outcomes to party 2. We can think of Equation 15.7 as a simple

way for party 1 to balance party 2's outcomes against his own;

of course, much more complex combinations are possible. The

factor f we may think of as a friendship factor. If f = 1,

party 2's welfare counts as much to I as does his own. If f = 0,

party 2's welfare is a matter of indifference to party 1. We would

expect the usual case to be 0 < f < 1 with f > I corresponding to

adulation and f < 0 to antipathy. We thus have

Ul(cl, Z1, C2, Z2) = u(w) = -e-l - exp -ic 14-) cl)J (15.8)

where yj is the risk aversion coefficient on worth for party 1. Since

a U1(cl, 9,1, C2, 2)) ep( ~c1 l / ) 1+ fc£(192]'- (15.9)Dc1  Z2L=\£1/pri
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we have, from Equation 15.5,

(1( \ I ( 2

Note, as required, that vs  = 0 when f = 0.12

If the lifetimes Zi and k2 of persons 1 and 2 are

independent, then

~1 KYC(kj)n > [ - _(e ir 2 l ( >1
1)V 

2

Consider the symmetric case where person 1 and person 2 have

the same expectations for consumption and life:

n1 '= n2 9, C1 = C2 = c, and zi and Z2 are independent but

with the same distribution W£}.
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Then we have

t4je-.1c()n - fc()> (15.12)

If now f = 1 , we find vs12 V S  as given by Equation 8.18.

Person 1 would value person 2's life for small risks at the same

value he assigns to his own.

Returning now to Equation 15.11, we let f approach zero,

wri te

and find

/ I I cI ( 2 -;2

f so = sd, (15.14)

<G~d) eY1c1 ;' 2'

where Vsd is defined as the small-risk, distant-relation value

of life. Thus if person 1 has a distant relationship (small f)

with a person 2 who faces a small probability of death p, the

amount person 1 would contribute to eliminate this risk is

approximately pfvsd.

-100-



We shall now apply these results to two individuals, each of

whom have the base case parameters, but whose lifetimes are

independent. Figure 15.2 shows how the life value x/p implied

by Equation 15.2 depends on p for varying values of f. For

f = 1 we obtain the white pill result of Figure 11.4 as expected.

For f = 0.1 the life value is considerably smaller than 1/10 the

life value for f = 1 until p approaches 1, when it becomes

almost 1/4 of the life value for f = 1. For f = 0.01, the

life value is close to $10,000 for all values of p.

Figure 15.3 shows how v /f computed using Equation 15.11S12

depends on f. We observe that v /f approaches v $1,012,500

S12 s

as f approaches zero. Thus if our base case individual had a

slight relation (f = 0.01) with someone with identical character-

istics who faced a 0.01 probability of death, he should contribute

about $100 to eliminate the risk.
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16. Named Lives

One of the perennial questions that arises in this area is

whether a "named" life is worth more than a "statistical" life.

Society as a whole often seems willing to spend much more to save a

particular threatened person than it will to reduce the expected

number of deaths by one. We usually encounter these situations where

a child has fallen down an abandoned well or someone is lost in the

wilderness and is the subject of air search. The existence of effective,

but expensive, life-saving procedures like kidney dialysis has caused us

to confront this issue much more seriously now than in the past.

To examine the question, let us suppose that you are offered a special

type of life-saving insurance. If you find yourself in one of these life-

threatening situations, then this insurance will provide financial resources

to support an effort to save your life. The threatening situation could be

of any nature from being lost in the wilderness to having a medical problem

curable at great expense. How much should you pay for the insurance? Let

us visualize the situation as shown in Figure 16.1. If you don't buy the

insurance, then with probability t you will encounter such a life-

threatening situation in the coming year. If you don't encounter the

situation, you live your normal life. If you do encounter it, then

you live your normal life with probability s , the probability

that you survive the situation without the insurance. We

assume in this case that your survival hinges on other matters

than your financial resources, like whether you can find your way out

of the wilderness. We could modify the analysis to the case where
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Figure 16.1: Survival Insurance
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you can use your financial resources, but we choose not to do so

for simplicity.

If you buy the insurance, then you pay the premium x

regardless of what happens; however, now if you encounter the threat

there is a probability sw that you will survive by using the

resources provided by the policy. To be indifferent to purchasing

the insurance,

(1-t +ts) <u(c -cX, R) t(l-*Sw) u(Q, 0)

(l-t + tsw  <u(c Z + tswo) Ku(O, 0)>(16

or

(c -Cx, t(sw  u(0,0) + + tS<wo u(c > (16.2)
-t + ts w  1-t + ts w

We see that this equation is the same as Equation 11.1 with

t(sw -Swo)
p w wo Therefore, when t and hence p is small

l-t + tsw

x must be given by x = vsp or

t(sw -s wo)
x = vs  W V t(sw-Sw) (16.3)-t + tswo

w
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The premium for the insurance should be approximately the probability

of the threat times the small-risk value of life times the increase

in survival probability caused by having the insurance. Note that if

sw = 1 , Swo = 0 we have reproduced exactly the white pill results.

Suppose that the insurance provides coverage k . Then if it

is to be actuarially feasible,

kt < x - vst(sw -swo) (16.4)

or

k < vs(s w  -sw) (16.5)

The coverage could never exceed the small-risk life value, and would

usually be considerably less.

We can find how each person would determine his level of coverage

when x = kt by standard marginal analysis. Let s(k) = sw -Swo

be the increase in survival probability afforded by coverage k

Then the net benefit to the individual from buying k would be

vsts(k) - tk (16.6)

which is maximized when

s'(k) 1 (16.7)V 
S

Coverage is increased until the survival probability increment perI

dollar falls to v- Of course, if the initial dollar of coverage
l

provides less than V in survival probability per dollar, and if

additional dollars of coverage provide still less, then no insurance
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would be bought at all.

As an example, suppose that our base case individual, a flier,

is offered a $1,000,000 policy that will provide air searches for

him should he be lost in the wilderness. Suppose further that he

and the insurance company agree that there is one chance in 10,000

that he will need the policy in any year. Our individual figures that

he has 0.1 chance of surviving without the policy and 0.2 chance

of surviving with it, should he be lost. The value he computes is

then ($2,430,000) (0.1) (0.0001) or $24.30. But the insurance

company will not sell the policy for less than $100, so our base

case individual would refuse to buy it.
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17. Model Implications

Total Risk Preference and Liability Insurance

Individuals sometimes face financial losses that could have

devastating effects on their standards of living. For example,

if a person is found at fault in a suit claiming damages to the

health or life of another person, he could be subject to a liability

with long-ranging effects on his financial situation. The structure

we have developed for life-threatening situations can often be used

to investigate the purchase of liability insurance against larger

financial loss.

Suppose, for example, that an individual faces a liability

loss x in a particular year with probability p . How much x

should he pay for insurance against this loss? If he buys the

insurance, he faces utility <u(c -cx,2)> If he does not buy,

then with probability 1-p the loss does not occur and he faces

<u(c,)> .If the loss does occur, we assume that he will use

the annuital mechanism to spread it over the rest of his life so

that he faces the expected utility <u(c -Ck)> . To be

indifferent between buying the insurance and not buying it, we have

<u(c -x,k)> = p <u(c-cAu)> + (l-p) <u(cQ)> (17.1)

This equation can be solved exactly to find the premium that could

be justified by any loss, including, for example, one that cut

consumption in half (X = ). Instead of an exact calculation,

however, let us observe what happens to this equation if R is
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fixed. In this case, we have in our simple model an exponential

utility function on the consumptions c -cx , c -cx , and c

Because of the exponential property, these quantities can as well

be -Cx , -CX , and 0 . Thus the dollar losses on an annual

basis are simply scaled by z and then subjected to the utility

curve with risk tolerance p/ or pv . The risk tolerance of

this exponential is therefore the risk tolerance on annual consumption

multiplied by the discounted expected lifetime v . For the base case

individual p\) = (6000)(18.15) = $108,900. Thus the base case

individual is extremely risk tolerant for any lottery that affects only

a single year's income.
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Compensation for Hazard

Suppose that one individual wishes to impose a risk on another,

perhaps by building a potentially dangerous factory in his neighborhood.

One way to handle this problem is to have the factory builder compensate

those affected according to the principles we have described. Suppose,

however, that there is a difference of opinion in the probability

assignments. If our base-case individual fears that he is being
1

subjected to a 1000 chance of death per year, he will demand a

compensation of about $2400 per year. The factory builder may believe
1

that the risk is only I00,000 and be willing to pay only $24/year.

One way to solve this dispute might be to give the factory builder a

choice. He could pay the compensation and then be freed from any claims

if the factory kills our base-case individual (the case of negligence

being excluded). Or he could not pay the compensation and buy insurance

that would pay the estate of the base-case individual $2,400,000 should

he be killed. Clearly the first choice is preferable to the base-case

individual because it will allow him some additional joy to compensate

for his additional risk. However, the second choice would be cheaper

for the factory builder unless he can convince the affected party that

he should accept the builder's probability assessment. The second

choice would have the desired effect of inducing responsible behavior

on the part of the factory builder and would do much to overcome the

question of probability assignment because of the presence of the

third party, the insurance company.
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We can extend this idea to the case of buying products like

automobiles. The manufacturer could state the value of life he used

in making his design safety decisions and perhaps even guarantee to

pay that value to the estate of anyone killed as a result of the

design. This would be a way to make careful decisions about

product safety a positive selling point for the product.
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Tort

While there are obvious advantages in reaching agreement about

compensation in the case of death before the fact of death, there

will inevitably arise situations where one person has been charged

to be responsible for another's accidental death and a court is now being

asked to fix an amount of damages. Since the deceased is most

likely to have refused any finite amount of money for the right to

kill him, this problem has always been a major difficulty for the

courts, We have already mentioned how the economic value of life

has been used in such situations even though it rests on the

individual's value to others rather than to himself. It would seem

far wiser to proceed along the lines we have indicated.

Suppose, for example, that Mr. Smith had inherited a painting

done by his mother. It has a simple, attractive style, but is viewed

by others as definitely the work of an ungifted artist. However, Mr.

Smith values the picture very highly: he installs burglar alarms,

provides special humidity and temperature control systems to protect

it from environmental changes, and equips the room containing it with

a fire suppression system that will not harm the picture.

One day a business associate, Mr. Jones, visits Mr. Smith at

his home; they engage in a heated argument. At one point, Mr. Smith

leaves the room in frustration and Mr. Jones, in his anger, falls

upon the picture and destroys it. Now the matter has come to court;

Mr. Smith seeks damages from Mr. Jones. While admitting that Mr. Jones
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is at fault, his lawyers introduce evidence that damages should be

very low. Art experts testify that the picture is worth less than

$100 commercially. The point is made that Mr. Smith carried no

insurance on the picture. Mr. Smith argues that he did not carry

insurance because no sum of money could have replaced the picture.

Other art experts testify that the level of care provided by Mr.

Smith is usually reserved for pictures worth $1,000,000. The

question now is whether restitution to Mr. Smith is more nearly

afforded by an award near $100 or by an award near $1,000,000. 1

would argue that the second figure is more appropriate.

Thus, in the case of death, if there is evidence that

a person has always acted as if his life were worth

v= $2.4 million when facing small risks, then that is the

appropriate sum that should be awarded as a minimum in the

event of his death from what he considered to be a low-probability

risk. It is interesting to note that juries often award several

times economic value and that these awards are regarded by some

as excessive. I suggest that the juries' intuition may have been

in advance of our analytic methods.
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18. Model Refinement

The simple model we have discussed appears useful when the

individual is facing small probabilities of death against a background

of his normal life situation, for the preferences are used in a setting

close to the one in which they are assessed. However, the preference

model also could be applied to a far different situation, for example

one where the individual faces not a normal life expectancy, but equal

probabilities of living one or two more years. We can see the need to

assure that the model would be appropriate in such a situation. We

foresee that in some cases a new preference assessment would be necessary,

perhaps at a much greater level of detail*, year by year and income level

by income level, and including other attributes like state of health.

We shall not go to this extreme but shall examine some simple additions

to the basic model that may extend its range of usefulness without

excessive complication. We shall attempt to make the preference

model an adequate descriptor of preferences not only in the

"normal" situation, but also in the unhappy circumstance where either

life is short or income is low.

Consumption-Life Tradeoffs

We shall consider first the tradeoff between consumption and

lifetime currently described by the worth function

w(C'z) = 4()- (81

With n 2 this function prescribes that the individual will be

indifferent to a 1% decrease in lifetime if he is given a 2% increase

in consumption, which may be reasonable. However, the model also implies

*Detailed preference investigations are described in [8] and [10].
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that if he currently has two years to live at some consumption

level, he will be indifferent to the idea of living only one year

if he receives four times the level of consumption. That may be

true, but the conclusion should be checked with the individual.

If he does not agree with this implication, then we need a richer

model to capture his preferences.

To develop such a model, let us define

dc/c (18.2)

as the elasticity of consumption with respect to lifetime. For the model

of Equation 18.1, we find c(k) = n; the elasticity of consumption

with respect to lifetime is a constant. Individuals may want this

elasticity to change over life in some way. If we allow some

arbitrary E(f) we have

dc = E() d__

c(k) = ke z

= kh(z), where k is a constant. (18.3)

Suppose that elasticity is a linear function of k

( ) no + (n] -no) . (18.4)
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This relation implies that the elasticity is no at z 0 and

nj at x=z. Then

c(Z) - ke - n
0

l n z " (nl -no)

k 9n ° e(n l -no)

kh(k) (18.5)

where

h(z) = no e-(nl -no) -(18.6)

To place this result in the form of a worth function. we note

that when c() kh(i)

w(c,) = w(kh(k),z) = w(kh(i),i) = kh(-z)

since we have taken our numeraire to be the consumption at expected

lifetime. From the first of these equations c = kh(z) and hence

w(c,Z) = c h-

= c( o e(n -no) - (18.8)

Of course, this result reduces to our earlier worth function when

no = n: n. But now we can fit a wider range of preference. Our

base case individual, for example, finds that he likes no = 1,

ni = 2. This choice matches his earlier one when z is near ,

-117-



but also allows him to express his belief that he would give up

only about one-half his consumption to extend his lifetime from one

year to two years (w(c,2) = 1.02 w(c,l)).

Figure 18.1 shows this consumption-lifetime tradeoff function.

We observe, for example, that $20,000 per year consumption with 40 years

remaining is valued as highly as $61,000 per year consumption with

20 years remaining. It would have required $80,000 per year for 20 years

to be indifferent witn the original tradeoff function of Figure 9.3. If

still more flexibility is needed, Equation 18.3 can be used to generate

many other worth functions.

Risk Attitude

We have treated risk attitude very simply by examining a

constant risk tolerance p. We could, however, let the risk

tolerance depend on the worth level w in a linear fashion,

p(w) = P + pw , p > 0 . (18.9)

The risk aversion coefficient r(w) = I/p(w) will increase or

stay constant in worth as long as q > 0, which is the case

we shall assume. Since

r(w) - u"(w) (18.10)
u'(w)

We can develop the well-known relation for deriving the utility

function from the risk tolerance

Inu'(w) = -fr(w)

u(w) = fe-fr(w)

The value = 0 produces the exponential utility function

u(w) = -ew/P (18.11)

the value = 1, the logarithmic utility function

u(w) = zn(p + w).
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For other possible 's we have

u(w) = sgn (p -l)(p + (w)l- . (18.12)

For the case of most importance to us, 0 < ( < 1,

1- I
u(w) = -(p + (w) (p (18.13)

The question now is how to assess p and (. It is easy to

see for this class of utility functions, that to a good approximation,

if the individual is indifferent between a state of worth w and an

equiprobable lottery on w + z and w - z/2, then z = p(w), the

risk tolerance at worth level w. Thus, if we assess p(w) at two

different worth levels a and b we have

p(a) = p + oa, p(b) = p + ob. (18.14)

We can find ( from

0 = p(b) - p(a) (18.15)
b - a

and p by substituting this result in either of the original

equations.

Our base case individual has assessed p(20,O00) = 6000.

He also says that if he had worth 5000. he would be indifferent

between that situation and a 50-50 lottery on 8000 and 3500. Thus

p(5000) = 3000. When we solve for the p and ( implied by these

results, we find
p = 2000  (=0.2 (18.16)
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Of course, we can use this scheme only to encode assessments for

which p > 0.

If the linear functional form of Equation 18.9 does not

provide enough freedom, one can always resort to a direct encoding

of the utility curve.

Attribute Risk Aversion

To gain insight into the preference model, it is interesting

to examine the risk aversion on each attribute such as c or k

rather than simply the risk aversion on worth. Let rf  be the risk
z

aversion coefficient for the attribute z derived from the preference

function f,

2
a f

rf  = z 2
z af (18.17)

z

Since we have an explicit expression for u(c,z), we could derive

ru and ru directly from this equation. It is more insightful,
c k

however, to think separately of u(w) and w(c,k) and to determine

how much of the attribute's risk aversion has its source in

the risk preference function on the numeraire and how much in the

non-linearity of w(c,z). Thus to compute rU we write
z
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u a u -aw
az aw 3z

2 2
-U ±YLI _U _

2u w 2 2L (18.18)

aw2  az aw az

and then

2
2 2 aw

u az2  _ aw2  aw az

z u Du az aw
uz aw wz

u aw + r w  (18.19)rw 3z z

Thus the risk aversion coefficient for an attribute is the risk aversion

coefficient on worth multiplied by the scale change between the attribute

and worth plus the risk aversion coefficient of the worth function on that

attribute. We can think of this latter term as the induced risk aversion

for the attribute.
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Let us begin with consumption and compute

ru =ru -w + rw (18.20)
c w 3C C

For the linear risk tolerance of Equation 18.9,

r = 1 (18.21)
w p+Ow

From Equation 18.8,

aw_ = In0 e-(n- no) - (18.22)

and

rw  = 0 (18.23)

2

since 2w = 0. Because ac is a constant in c the risk

aversion coefficient on c is just ru  times this positive constant.w

Therefore if the individual has a risk averse utility function u,

he will be risk averse on lotteries that affect only the value of

C.
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Turning now to lifetime, we write

r u = rU Aw + r w (18.24)

We need to compute frmEquation 18.8,

zi ch-T I0Io + (nv-o' (18.25)

This quantity changes with z but is always positive. However,

rw no 1 n o n (18.26)
£ ~ ~ O (fl1~lO)! no + (ri-fo)j

may sometimes be negative and it is possible that it be so negative

that r u will become negative in some range. For example, in our
z

orivina1 model ni n = n, o = 0, and we have

ru 9 c (2n- -l (18.27)
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which will be negative if

Z < - (18.28)

or for the base case, z/i < 0.387, or z < 17.8 years. Thus

the individual would be risk preferring for lotteries on life alone

that had outcomes in this range.

Risk preference on an attribute is not necessarily a problem.

For example, people often say that at fixed consumption levels they

would prefer their present lottery on length of life to a

certainty of living the expected lifetime. They would have to be

offered a life longer than the expected lifetime for certain before

they will accept the lottery; this is risk preference.

The question is really one of measuring the preferences of the

individual. If we have a rich enough model, most people's preferences

can be encoded. Examining attribute risk preference may be helpful

in seeing the implications of the choices.

-125-



Numerical Results

We clarify the implications of this section by examining numerous

results. Table 18.1 shows the small risk life value and pmax for various

choices of value function parameters no and n, and for various risk

attitudes. The first column corresponds to the exponential utility function

with P = 6000. The entries in this column for no = n, = 2 correspond

to the original base case results. We observe that changing no to 1, to

reflect the newly experienced tastes of the base case individual, increases

the small-risk value slightly to 2.456 million dollars and decreases pmax

to 0.0916. In general, foritthe exponential case we see that changes in

no and n, between the values 1 and 2 have much greater effects on

Pmax than they do on vs.

The other columns of the Table correspond to two linear risk tolerance

utility functions. One has the parameters p = 2000, = 0.2 derived

in Equation 18.16. The other has parameters p = 4000, = 0.1 and

represents an intermediate case between this one and the exponential.

With p = 4000, 0.1 we have p(20,000) = 6000 as before, but

p(5000) = 4500. This means that an individual with worth 5000 would

be just indifferent between this situation and a 50-50 chance at 2750 -

and 9500. As we move to the right in Table 18.1, risk aversion for small

worths (less than $20,000) is itncreasing, while risk aversion for large

worths is decreasing.

Since the small-risk life value and pmax are both heavily influenced

by the degree of risk aversion for small worths, it is not surprising to see
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vsincrease and p niax decrease as we move to the right in Table 18.1.

For the case no 1, 11 = 2, =2000, =0.2 we find vs = 5.929

million dollars, almost 2-1/2 times the base case values. To the extent

that individuals are more risk averse for small worths than the base case

parameters would indicate, the small-risk life values may be understated

by factors of 2 or 3.

Selecting a value function for a utility function requires matching

the preference of the individual both in general form and in specific

number. To do this it is helpful to examine the general characteristics

of the function choices that appear in the Table. Figure 78.2 shows the

risk aversion on lifetime that is iimplied by each choice of value function

and utility function parameters. Figure 18.2 (a) shows the results for the

value parameters no,=1 1. We see constant or decreasing risk

aversion for all utility functions, and no region of risk preference on life-

time. Figure 18.2 (b) for no = 1, nj = 2 shows increasing risk

aversion, and, in the exponential case, a region of risk preference. Fig-

ure 18.2 (c) for no = n= 2 shows generally risk increasing behavior

except for the case =2000, p = 0.2 where risk aversion first increases

and then decreases. All of these curves show an initial range of risk

preference. As we discussed above, this region extends to 17.8 years for

the exponential case. Figure 18.2 (d) shows the highly variable behavior

associated with the choice no = 2, nj = 1. Ag~ain we observe a region of

risk preference.

Within the possibilities examined, a person wishing to have no

region of risk preference would be constrained to only 5 of the 12

possibilities examined. For example, the choice =4000, =0.1
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Figure 18.2 (a): Risk Aversion on Lifetime
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Figure 18.2 (b): Risk Aversion on Lifetime
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Figure 18.2 (c): Risk Aversion on Lifetime
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Figure 18.2 (d): Risk Aversion on Lifetime
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shows risk aversion everywhere when rjo = 1 and exhibits increasing

risk aversion when nr = 2, but decreasing risk aversion when nj = 1.

If the individual wishes to have his preferences described by such

parameters, then Table 18.1 shows that vs will be near 3.5 million

dollars and pmax near 0.06.
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19. Extensions

Our investigation has revealed several ways in which the

basic model can be extended, but several other possibilities

remain. An important extension would be to include a measure

of health status to augment the present consumption and remaining

life variables. While there is no generally accepted measure,

one can construct a practical scale based on an individual's

capability to participate in various life activities. Being able

to incorporate a health indicator would permit extending the

usefulness of the model to medical decisions where outcomes such

as paralysis or limited activity were a possible consequence of

the decision, or to the purchase of disability insurance.

While we have used a single consumption variable for

simplicity, it should be clear that the formulation could be

extended to year by year consumption measures, with joint

probabilities assessed on the trajectory of annual consumption.

A methodology for such probability assessments is presented by

Buede [12]. This extension could be combined with the health

status measure to provide a very complete, if difficult to assess,

value function for an individual.

A final extension would be to the case of multiple deaths,

which we call catastrophes. The perspective we have taken is the

individual's - whether he is considering risks to his own life or

-134-



buying safety for someone else he values. This perspective is

different from one that foresees a government role in collective

safety decisions. A study by Ferreira and Slesin [13] suggests

that society may be overspending in the prevention of catastrophes.

To put it another way, the individual might well prefer that the

funds devoted to disaster prevention and mitigation be spent in

ways that reduced his probability of death, regardless of whether

others were involved. Collective decisions can result in resource

allocations that are not in the interest of any individual. However,

a complete treatment of this issue will require more research.

1.
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20. Conclusions

We have presented a conceptual framework and mathematical

formulation for decisions involving risks to life. The ethical

basis for this investigation is that every individual has the

right to make safety decisions regarding his own life.

The general model we have developed resolves a question

that often troubles those who are concerned about "valuing"

human life. They ask, "If you place a value on someone's life,

does that mean that I can buy his life for that amount of money?"

While the question is easy to answer "no" on ethical grounds, the

answer that some simplistic schemes for life valuation would have

to supply if they are to be consistent is "yes". However, the

formulation we have discussed shows that there is no inconsistency

between refusing to sell your life for money and being willing to

trade risk of death for money in small risk situations. The small

risk value of life that we have determined is not a selling price

for life and yet is a very practical basis for making the many

decisions involving buying and selling hazards to life that we

face over a lifetime.

We have emphasized the use of numerical examples to provide

a sense of magnitude to the results. The model we have used

accounts for the major factors influencing a hazardous decision

and yet is simple enough to place only reasonable demands on

the individual who wishes to use it. We have avoided any

examination of an "average" individual because we feel that
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such results might be used to promote the idea of a standard

small-risk life value, an idea that we believe is not in

keeping with the ethical basis for the model. Nevertheless, it

is quite clear from the numerous results and a limited amount

of interviewing of people on these issues that many individuals

feel comfortable with the idea of using their small-risk value

in decision-making. Furthermore, in all cases, this small-risk

value is many times the economic value that would be implied by

commionly-used life valuation methods.

If these results hold generally, there are major implica-

tions for rmany decisions in our society. Each individual can use

the small-risk value of his life in his own decision-making to

assure that he will be consistent with his own preferences for

risks affecting the quality and quantity of life. Furthermore,

he would be wise to insist that his agents do likewise.
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on the value of an individual's life to others rather than to himself.
These approaches are both technically and ethically questionable.

In this report, we develop a model for an individual who wishes to
make life and death decisions on his own behalf or who wishes to delegate
them to his agents. We show that an individual can use this model if he
is willing to trade between the quality and the quantity of his life. A
simplified version requires him to establish preference between the
resources he disposes during his lifetime and the length of it, to
establish probability assessments on these quantities, to characterize
his ability to turn present cash into future income, and to specify his
risk attitude. We can use this model to determine both what an individual
would have to be paid to assume a given risk and what he would pay to
avoid a given risk. The risks may range from those that are virtually
infinitesimal to those that are imminently life threatening. We show
that this model resolves a paradox posed by previously proposed models.
In this model there is no inconsistency between an individual's refusing
any amount of money, however large, to incur a large enough risk, and yet
being willing to pay only a finite amount, his current wealth, to avoid
certain death.

-3
We find that in the normal range of safety decisions, say 10 or

less probability of death, the individual has a small-risk value of life
that he may use in the expected value sense for making safety decisions.
This small-risk life value applies both to risk increasing and risk
decreasing decisions, and i of the order of a few million dollars in the
cases we have measured. This small-risk value of life is typically many
times the economic value of life that has been computed by other methods.
To the exyent such economic values are used in decisions affecting the
individual, they result in life risks that are in excess of what he would
willingly accept. Using the small-risk life value as a basis for compensa-
tion should allow most risk-imposing projects to proceed without violating
anyone's right to be free from significant involuntarily imposed hazards.

The report demonstrates the use of the model to treat hazards that
continue over many years, to determine the size of contributions to saving
the lives of others, and to incorporate more precise specifications of
consumption-lifetime preferences.
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